Effect of bis(maltolato)oxovanadium (IV) (BMOV) on selenium nutritional status in diabetic streptozotocin rats.
نویسندگان
چکیده
The role of V as a micronutrient, and its hypoglycaemic and toxicological activity, have yet to be completely established. The present study focuses on changes in the bioavailability and tissue distribution of Se in diabetic streptozotocin rats following treatment with V. The following four study groups were examined: control; diabetic (DM); diabetic treated with 1 mg V/d (DMV); diabetic treated with 3 mg V/d (DMVH). V was supplied in the drinking water as bis(maltolato)oxovanadium (IV). The experiment had a duration of 5 weeks. Se was measured in food, faeces, urine, serum, muscle, kidney, liver and spleen. Glucose and insulin serum were studied, together with glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione transferase (GST) activity and malondialdehyde (MDA) levels in the liver. In the DM group, we recorded higher levels of food intake, Se absorbed, Se retained, Se content in the kidney, liver and spleen, GSH-Px and GST activity, in comparison with the control rats. In the DMV group, there was a significant decrease in food intake, Se absorbed, Se retained and Se content in the liver and spleen, and in GSH-Px and GST activity, while fasting glycaemia and MDA remained unchanged, in comparison with the DM group. In the DMVH group, there was a significant decrease in food intake, glycaemia, Se absorbed, Se retained, Se content in the kidney, liver and spleen, and in GSH-Px and GST activity, and increased MDA, in comparison with the DM and DMV groups. We conclude that under the experimental conditions described, the treatment with 3 mg V/d caused a tissue depletion of Se that compromised Se nutritional status and antioxidant defences in the tissues.
منابع مشابه
Changes in Iron Metabolism and Oxidative Status in STZ-Induced Diabetic Rats Treated with Bis(maltolato) Oxovanadium (IV) as an Antidiabetic Agent
UNLABELLED The role of vanadium as a micronutrient and hypoglycaemic agent has yet to be fully clarified. The present study was undertaken to investigate changes in the metabolism of iron and in antioxidant defences of diabetic STZ rats following treatment with vanadium. Four groups were examined: control; diabetic; diabetic treated with 1 mgV/day; and Diabetic treated with 3 mgV/day. The vanad...
متن کاملAntidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT - B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with re...
متن کاملBis maltolato oxovanadium (BMOV) and ischemia/reperfusion-induced acute kidney injury in rats
BACKGROUND The aim of the present study was to test the potential protective effects of the organic vanadium salt bis (maltolato) oxovanadium (BMOV; 15 mg/kg) in the context of renal ischemia/reperfusion (30 min of ischemia) and its effects on renal oxygenation and renal function in the acute phase of reperfusion (up to 90 min post-ischemia). METHODS Ischemia was established in anesthetized a...
متن کاملSpeciation studies of vanadium in human liver (HepG2) cells after in vitro exposure to bis(maltolato)oxovanadium(IV) using HPLC online with elemental and molecular mass spectrometry.
A large number of studies has been published proposing a range of vanadium containing compounds as potential new anti-diabetic drugs due to the observed insulin mimetic function of V(IV) complexes. Vanadium uptake and distribution within the body have been investigated in animal models by determination of total vanadium concentrations. Phase I and phase IIa human clinical trials have been compl...
متن کاملBis(maltolato)-oxovanadium (IV)-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses (review).
Over the last several decades, a large body of evidence has accumulated to suggest that organo-vanadium compounds (OVC) are more potent than inorganic vanadium salts in regulating hyperglycemia and insulin-resistance in rodent models of both type I and type II diabetes. Among these OVC, vanadium (IV) oxo bis(maltolato) (BMOV) was the first to be investigated for its higher potency over inorgani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of nutrition
دوره 108 5 شماره
صفحات -
تاریخ انتشار 2012